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Abstract. We introduce a free version of the Stein kernel, relative to a semicircular law. We use it to

obtain a free counterpart of the HSI inequality of Ledoux, Peccatti and Nourdin, which is an improvement
of the free logarithmic Sobolev inequality of Biane and Speicher, as well as a rate of convergence in the

(multivariate) entropic free Central Limit Theorem. We also compute the free Stein kernels for several

relevant families of self-adjoint operators.

Introduction

Entropy. The classical notion of entropy was first introduced by Boltzmann in his work on the kinetic
theory of gases, and since then has played an ubiquitous role in many fields, such as statistical physics,
information theory and mathematics. The classical entropy takes the form

H(ν) :=

∫
f log fdx ν = f dx.

Following the usual convention in probability, this is the opposite of the physical entropy. Often, we are
interested in a relative entropy with respect to a non-negative measure µ = e−V dx, which takes the form

Hµ(ν) =

∫
dν

dµ
log

(
dν

dµ

)
dµ = H

(
dν

dx

)
+

∫
V dν.

We would like to point out that physicists would call this quantity a free energy (the second term plays the
role of an internal energy, and we omitted the temperature, since it will play no role in this work and can
be absorbed in the potential). When the reference measure is the Lebesgue measure, the relative entropy
coincides with the (simple) entropy. The relative entropy notably appears in Sanov’s theorem as the large
deviations rate function for sums of i.i.d. random variables.

In [37], Voiculescu introduced a notion of free entropy χ which plays the role of entropy in free prob-
ability theory. Most notably, it is monotone along the free central limit theorem, and the associated free
energy/relative entropy appears as the large deviations rate function for the empirical spectrum of large
random matrices. It also detects freeness: an n-tuple (x1, .., xn) of non-commutative random variables with∑
χ(xi) > −∞ is free iff it satisfies χ(x1, .., xn) =

∑
χ(xi).

The microstates free entropy relative to a potential V can then be defined as

χ(x1, .., xn|V ) = τ(V (x1, .., xn))− χ(x1, .., xn).

As in the classical case, we should think of this quantity as playing the role of a free energy.
Several of the uses of the entropy in classical probability are consequences of its property of being monotone

along the heat flow. However, for technical reasons, it is hard to study the analogous property for the
microstates free entropy (which would be monotonicity along convolutions with a free semicircular random
variable). It is not even clear whether the microstates free entropy can be differentiated along the free
heat flow. To get around this difficulty, Voiculescu introduced a second notion of entropy, called the non-
microstates free entropy. This second notion of entropy was specifically constructed so that the Fisher
information could be easily introduced as the derivative of the entropy along the free heat flow. Since this
work will mainly deal with logarithmic Sobolev inequalities, for which this property is essential, we shall
mostly deal with this second notion of entropy. As is standard, the non-microstates free entropy (relative to
V ) shall be denoted by χ∗ (resp. χ∗(x1, . . . , xn|V )).
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In dimension one, the two notions of entropy coincide, and have an explicit expression (as we shall see in
Section 4), but for n-tuples of non-commutative random variables with n ≥ 2 this is an open problem.

Logarithmic Sobolev inequalities. The classical logarithmic Sobolev inequality (LSI for short)

Hµ(ν) ≤ 1

2ρ

∫
|∇f |2

f
dµ; ν = fµ.

was introduced by Gross in [17], where it was shown to be equivalent to hypercontractivity of the semigroup
of a diffusion process naturally associated with µ, a remarkable smoothing property that states that the
action of the semigroup sends the space Lp(µ) into Lq(µ) for any q > p > 1 after a finite time. This
inequality can be thought of as a kind of Sobolev inequality, where instead of embedding the Sobolev space
H1 into Lp for some p > 2, we embed it into the Orlicz space L2 logL. It has played an important role in
many aspects of stochastic analysis: it is used to study long-time behavior for diffusion processes, it implies
Gaussian concentration for the measure µ and has also been used to study large-scale behavior of interacting
particle systems and large random matrices. It also implies Talagrand’s transport-entropy inequality [30].
We refer to [1] for more about its uses.

A fundamental property of this inequality is that, unlike for the usual Sobolev inequalities, the dimension
plays no role: when it holds for a metric-measure space, then it holds for products of the space, with the
same constant. This property is the source of many interesting applications in infinite-dimensional analysis,
such as dimension-free concentration bounds.

When the reference measure is the standard Gaussian measure on Rn, it is known that the LSI holds with
sharp constant ρ = 1, and moreover cases of equality are explicitly known, and are standard gaussians with
arbitrary mean [8,9]. A classical theorem of Bakry and Émery [2] states that if the reference measure on Rn
is of the form µ = e−V dx with HessV ≥ ρId for some ρ > 0, then it satisfies a LSI with constant ρ.

In the free case, the LSI (if it holds) takes the form

E(X|V )− E(Y |V ) ≤ 1

2ρ
Φ∗(X|V )

where E ∈ {χ, χ∗}, V is some reference potential, X is an n-tuple of free random variables, Y is another
n-tuple that minimizes the free entropy relative to V , and Φ∗(X|V ) is the non-microstates free Fisher
information of X relative to the potential V . This inequality was obtained by Biane and Speicher [3] when
the reference potential is quadratic and Y is therefore an n-tuple of free semicircular random variables.

We shall still manage to obtain a LSI involving the microstates free entropy in the situation where the
potential is uniformly convex. However, the improved versions we shall discuss in the next subsection rely
on semigroup arguments, and we shall only establish them for the non-microstates free entropy.

Unlike in the classical setting, we do not know whether the free LSI automatically implies the free Ta-
lagrand inequality (which has been studied in [19] for example), except in dimension one [22]. The main
obstacle is that the existence of free monotone transport is not yet well-understood and examples are quite
rare.

Improved functional inequalities. In the past decade, there has been a lot of interest in improved or
quantitative functional inequalities. Informally, the situation is as follows: given a sharp functional inequality
of the form F (f) ≤ G(f) for which the cases of equality are explicitly known, can one improve the functional
inequality by taking into account how far f is from the set F of functions for which equality holds. Typical
improvements that have been considered take the form

δ(f) = G(f)− F (f) ≥ c d(f,F)α

where d is a well-chosen distance on the set of functions considered. Examples of inequalities for which such
improvements have been obtained include isoperimetric inequalities [16], the Brunn-Minkowski inequality
[14], Sobolev inequalities [11] and many others. In the last few years, there has been several partial results
for the Gaussian logarithmic Sobolev inequality [4, 5, 15, 21, 24] but they are not entirely satisfactory. The
problem of obtaining a deficit estimate in terms of a simple distance that is valid for all functions and behaves
well in high dimension is still open at the time of writing.

One of the results presented in this work is an adaptation of a result of [4] on deficit estimates for the
LSI to the free case. We show that for a n-tuple of non-commutative random variables with variance smaller
than n, the deficit in the free LSI (with respect to a n-tuple of free semicircular laws) is bounded from below
by a function of the free Fisher information.
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Another type of improvement to functional inequalities one can seek is to take into account another
functional H and seek a functional inequality of the form F (f) ≤ c(G(f), H(f)) for some function c satisfying
c(x, y) ≤ x ∀y. Informally, this type of improvement consists of using extra information (the size of H) to
learn more about how F and G relate. An improvement of this form for the Gaussian logarithmic Sobolev
inequality, the so-called HSI inequality, has been obtained by Ledoux, Nourdin and Peccatti in [23], involving
the Stein deficit (see 1.7):

Hγ(ν) ≤ S(ν|γ)2

2
log

(
1 +

Iγ(ν)

S(ν|γ)2

)
(1)

for all centered measures ν, where Hγ stands for the relative entropy with respect to the Gaussian measure,
and Iγ for the Fisher information with respect to γ. Since log(1 + x) < x whenever x > 0, this is indeed
a strict improvement of the classical LSI. This inequality has some applications to the study of long-time
behavior of the Ornstein-Uhlenbeck semigroup, and can be used to yield rates of convergence in the entropic
central limit theorem.

One of the results of this work is to obtain a free analogue of this HSI inequality, involving a non-
commutative analogue of the Stein discrepancy. We shall use this inequality to establish a rate of convergence
in entropy for the multivariate free Central Limit Theorem.

Other free functional inequalities for which improvements could be investigated include the one-dimensional
Brunn-Minkowski inequality of [22] and the one-dimensional transport-entropy inequality of [19].

Acknowledgements. We would like to thank Qiang Zeng for some helpful discussions we had in the
early stages of this paper. We would also like to thank Dan-Virgil Voiculescu for his suggestions and
encouragement.

1. Definitions and Notation

In this section, M is a von Neumann algebra with a faithful normal state ϕ, and X = (x1, . . . , xn) ∈Mn

is an n-tuple of self-adjoint operators. We recall several free probabilistic quantities associated to X and
also define the quantities which appear in the improved free LSI.

1.1. Norms. Recall that via the GNS construction, ϕ defines an inner product on M :

〈x, y〉ϕ := ϕ(y∗x), x, y ∈M.

The completion of M with respect to the induced norm ‖ · ‖ϕ is denoted L2(M,ϕ). When the state ϕ is
clear from the context, we will abuse the notation and write ‖ · ‖2 and L2(M).

For the von Neumann tensor product M⊗̄Mop with faithful normal state ϕ ⊗ ϕop, we can consider the
Hilbert space L2(M⊗̄Mop, ϕ ⊗ ϕop). This space can be identified with HS(L2(M)) (the Hilbert–Schmidt
operators on L2(M)) via the following map

x⊗ yop 7→ 〈y, · 〉2 x, x, y ∈M.

In light of this identification, we will write 〈· , ·〉HS for 〈· , ·〉ϕ⊗ϕop , when ϕ is clear from the context.

For the n-tuple X we define ‖X‖ := maxj ‖xj‖. We will also write C∗(X) and W ∗(X) for the C∗-algebra
and von Neumann algebra generated by x1, . . . , xn, respectively. When ϕ is clear, we write Var(X) for∑n
j=1 ϕ(x∗jxj). Given another n-tuple Y = (y1, . . . , yn) ∈Mn, we write

〈X,Y 〉ϕ =

n∑
j=1

〈xj , yj〉ϕ .

When ϕ is clear we write 〈X,Y 〉2.
For A,B ∈ L2(Mn(M⊗̄Mop), (ϕ⊗ ϕop) ◦ Tr) (the n× n matrices with entries in L2(M⊗̄Mop, ϕ⊗ ϕop)),

we write

〈A,B〉(ϕ⊗ϕop)◦Tr =

n∑
j,k=1

〈[A]jk, [B]jk〉ϕ⊗ϕop .

Again, when ϕ is clear we simply write 〈A,B〉HS .
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1.2. Formal power series and non-commutative derivations. We let t1, . . . , tn be non-commutating
self-adjoint indeterminates, collected as the n-tuple T = (t1, . . . , tn). We let P denote the set of polynomials
in these indeterminates. For a polynomial p ∈P and a monomial m, we let cm(p) ∈ C denote the coefficient
of m in p. After [18], for each R > 0 we define the following norm

‖p‖R =
∑
m

|cm(p)|Rdeg(m),

where the (finite) sum is over all monomials appearing in p. The completion of P with respect to the ‖ · ‖R-
norm, a Banach algebra, is denoted P(R) and can be thought of power series with radius of convergence at
least R. Given an n-tuple of power series F = (f1, . . . , fn) ∈ (P(R))n, we define ‖F‖R := maxj ‖fj‖R.

After [39], for each j = 1, . . . , n the j-th cyclic derivative Dj is defined on monomials m ∈P by

Djm =
∑

m=atjb

ba,

and extended linearly to all of P. Then for p ∈P,

Dp = (D1p, . . . ,Dnp)

is the cyclic derivative of p. Similarly, for each j = 1, . . . , n, the j-th free difference quotient ∂ is defined on
monomials m ∈P by

∂jm =
∑

m=atjb

a⊗ bop,

and extended linearly to all of P. For P = (p1, . . . , pn) ∈Pn, we define

JP =

 ∂1p1 ∂2p1 · · · ∂np1

...
...

. . .
...

∂1pn ∂npn · · · ∂npn

 ∈Mn(P ⊗Pop).

By [28, Corollary 3.8], J D extends to P(R), for any R > 0, and is valued in the Banach algebra

Mn(P⊗̂RPop). Here P⊗̂RPop is the completion of the algebraic tensor product P(R) ⊗ (P(R))op with
respect to the projective tensor norm (see [28, Section 3.1] for further details).

Given p ∈P, we will write p(X) for the image of p under the map defined by ti1 · · · tid 7→ xi1 · · ·xid . For
any R ≥ ‖X‖, this map extends to P(R), on which we use the same notation. We let P(X)(R) denote the
image of this extension, which we note lies in C∗(X).

Similarly, given another n-tuple Y = (y1, . . . , yn) ∈Mn and η ∈P⊗Pop, we write η[X,Y ] for the image
of η under the map ti1 · · · tid ⊗ tj1 · · · tje 7→ xi1 · · ·xid ⊗ yj1 · · · yje . When Y = X, we simply write η[X]. For
R ≥ ‖X‖, ‖Y ‖, this map extends to P⊗̂RPop, on which we use the same notation. We let P(X)⊗̂RP(Y )
denote the image of this extension, which we note lies in C∗(X)⊗min C

∗(Y )op

1.3. Relative free Fisher information. Recall from [39] that the conjugate variables to X are vectors
ξx1

, . . . , ξxn ∈ L2(W ∗(X), ϕ) satisfying for each j = 1, . . . , n and each p ∈P〈
ξxj , p(X)

〉
2

= 〈1⊗ 1op, [∂jp](X)〉HS . (2)

The free Fisher information for x1, . . . , xn is defined in [39] as the quantity

Φ∗(x1, . . . , xn) =

n∑
j=1

‖ξxj‖22,

when the conjugate variables ξx1 , . . . , ξxn to X exist, and as +∞ otherwise. We will also denote this quantity
by Φ∗(X).

Definition 1.1. Given µ ∈ R and σ > 0, by a free (µ, σ2)-semicircular n-tuple we shall mean an n-tuple
(s1, . . . , sn) of semicircular operators s1, . . . , sn that are freely independent from each other and satisfy
ϕ(sj) = µ and ϕ(s2

j ) = σ2 for each j = 1, . . . , n.

The conjugate variables to a free (0, 1)-semicircular n-tuple S = (s1, . . . , sn) are simply s1, . . . , sn. Hence
Φ∗(S) = Var(S) = n. More generally, for ρ > 0, the conjugate variables to 1√

ρS (a free (0, ρ−1)-semicircular

n-tuple) are
√
ρs1, . . . ,

√
ρsn so that Φ∗( 1√

ρS) = nρ.
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Remark 1.2. Recall that if the conjugate variables to X exist and R > ‖X‖, then by [26, Theorem 2.5]
and [13, Lemma 37] the map P(R) 3 f 7→ f(X) is injective. Consequently, Dj , D , and ∂j induce derivations

on P(X)(R), which we denote Dxj , DX , and ∂xj , respectively. Similarly, J induces a derivation valued in

Mn(P(X)⊗̂RP(X)), which we denote by JX .

For V ∈ P(R), R > ‖X‖, we say that the joint law of X with respect to ϕ is a free Gibbs state with
potential V if for each j = 1, . . . , n and each p ∈P

〈[DjV ](X), p(X)〉2 = 〈1⊗ 1op, [∂jp](X)〉HS .

That is, if the conjugate variables to X are given by [D1V ](X), . . . , [DnV ](X). Equivalently, the following
equation holds for all P ∈Pn:

〈[DV ](X), P (X)〉2 = 〈(1⊗ 1op)⊗ In, [JP ](X)〉HS ,
where In ∈ Mn(C) is the n × n identity matrix. For some simple examples, consider for each ρ > 0 the
potential

Vρ :=
ρ

2

n∑
j=1

t2j ∈P.

Then the joint law of a free (0, ρ−1)-semicircular n-tuple is a free Gibbs state with potential Vρ.

Definition 1.3. For X = (x1, . . . , xn) ∈ Mn, let V ∈ P(R) for R > ‖X‖. We define the free Fisher
information of x1, . . . , xn relative to V to be the quantity

Φ∗(x1, . . . , xn | V ) :=

n∑
j=1

‖ξxj − [DjV ](X)‖22

if the conjugate variables ξx1
, . . . , ξxn to X exist, and as +∞ otherwise. We also denote this quantity by

Φ∗(X | V ). In this context, we refer to V as a potential.

The quantity Φ∗(X | V ) is meant to measure how close the conjugate variables ξxj are to [DjV ](X), and
so measures in some sense how close the joint law of X is to a free Gibbs state with potential V .

1.4. Relative non-microstates free entropy. Let S = (s1, . . . , sn) be a free (0, 1)-semicircular n-tuple,
free from x1, . . . , xn. Then the non-microstates free entropy of x1, . . . , xn is defined in [39] to be the quantity

χ∗(x1, . . . , xn) =
1

2

∫ ∞
0

(
n

1 + t
− Φ∗(X +

√
tS)

)
dt+

n

2
log(2πe),

which we also denote by χ∗(X).
If X is a free (0, ρ−1)-semicircular family, then X +

√
tS is a free (0, ρ−1 + t)-semicircular family and

therefore Φ∗(X +
√
tS) = n(ρ−1 + t)−1. From this it is easy to compute χ∗(X) = n

2 log(2πeρ−1).

Definition 1.4. For X = (x1, . . . , xn) ∈ Mn, let V ∈ P(R) for R ≥ ‖X‖, we define the non-microstates
free entropy of x1, . . . , xn relative to V to be the quantity

χ∗(x1, . . . , xn | V ) := ϕ(V (X))− χ∗(x1, . . . , xn),

which we will also denote by χ∗(X | V ). In this context, we refer to V as a potential.

Since χ∗( · ) is maximized (for fixed variance) by an n-tuple of free semicircular operators, it is easy to see
that χ∗( · | Vρ) is minimized by a free (0, ρ−1)-semicircular n-tuple.

1.5. Relative microstates free entropy. For each k ∈ N, let Msa
k denote the space of k × k self-adjoint

matrices. For l ∈ N and ε > 0 consider the set

Γ(X; k, l, ε) = {Y ∈ (Msa
k )n : | 1

n
Tr(p(Y ))− ϕ(p(X))| < ε, ∀p ∈P with deg(p) ≤ l}.

The microstates free entropy of x1, . . . , xn is then defined in [37] as the quantity

χ(x1, . . . , xn) = inf
ε,l

lim sup
k→∞

1

k2
log(Vol(Γ(X; k, l, ε))) +

n

2
log k,

which we will also denote by χ(X).
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Definition 1.5. For X = (x1, . . . , xn) ∈ Mn, let V ∈ P(R) for R ≥ ‖X‖, we define the microstates free
entropy of x1, . . . , xn relative to V to be the quantity

χ(x1, . . . , xn | V ) := ϕ(V (X))− χ(x1, . . . , xn),

which we will also denote by χ(X | V ). In this context, we refer to V as a potential.

The functional χ( · | V ) has been previously considered in [40, Section 3.7] and [18, Theorem 5.1], where
the following lemma was observed.

Lemma 1.6. Let ϕ = τ be a trace. For V = V ∗ ∈P(R), suppose Y = (y1, . . . , yn) ∈Mn satisfies ‖Y ‖ < R
and minimizes χ( · | V ). Then joint law of Y is a free Gibbs state with potential V .

Proof. Let P = (p1, . . . , pn) ∈Pn be an n-tuple of polynomials. By [38, Proposition 1.3], we have

d

dt
χ(y1 + tp1(Y ), . . . , yn + tpn(Y )) |t=0=

n∑
j=1

τ ⊗ τop([∂jpj ](Y )) = (τ ⊗ τop) ◦ Tr([JP ](Y )).

It is also easy to compute that

d

dt
τ(V (y1 + tp1(Y ), . . . , yn + tpn(Y ))) |t=0=

n∑
j=1

τ([∂jV ](Y )#pj(Y )) = τ([DV ](Y ) · P (Y )),

where (a⊗ bop)#c = acb. So, by virtue of minimizing the microstates free entropy relative to V we have

0 =
d

dt
χ(y1 + tp1(Y ), . . . , yn + tpn(Y ) | V ) |t=0= τ([DV ](Y ) · P (Y ))− (τ ⊗ τop) ◦ Tr([JP ](Y ));

that is, the joint law of y1, . . . , yn is a free Gibbs state with potential V . �

1.6. Free Stein Discrepancy. In this section, we introduce a free analogue of the Stein discrepancy. In
commutative probability, the Stein discrepancy is a way to measure how far away a probability measure
is from a given reference measure by looking at how badly it violates a set of relations that characterize
the reference measure. These relations are often defined via an integration by parts formula the reference
measure satisfies. For the Gaussian measure, the formula usually employed is∫

x · ∇fdγ =

∫
∆fdγ ∀f ∈ C∞c (Rn). (3)

In general, one finds such an integration by parts formula by characterizing the reference measure µ as the
unique invariant probability measure of a well-chosen reversible Markov process with generator L, and then
using the relation

∫
Lfdµ = 0 ∀f . For the Gaussian measure, we get the above relation when using the

Ornstein-Uhlenbeck flow as such a Markov process.

Definition 1.7. Let ν be a centered probability measure on Rn. The Stein kernel of ν with respect to the
Gaussian measure γ on Rn is the matrix-valued function τ : Rn −→ Sn(R) such that∫

x · ∇fdν =

∫
〈τ,Hess f〉HSdν. (4)

The Stein discrepancy of ν with respect to γ is then given by

S(ν|γ) :=

(∫
||τ − Id||2HSdν

)1/2

if the Stein kernel exists, and +∞ if not.

The Stein kernel is a way to reformulate the integration by parts formula. It is easy to see that a
probability measure satisfies (3) for all f if and only if its Stein kernel is the identity. We also note that for
a Stein kernel with respect to the Gaussian to exist, ν must be centered. We refer to [23] and the references
therein for more about the Stein method in classical probability.

We now introduce the non-commutative analogues of the Stein kernel and Stein discrepancy:
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Definition 1.8. For X = (x1, . . . , xn) ∈Mn, let V ∈P(R) for R > ‖X‖. An element

A ∈ L2(Mn(M⊗̄Mop), (ϕ⊗ ϕop) ◦ Tr)

is said to be a free Stein kernel for X relative to V (with respect to ϕ) if

〈[DV ](X), P (X)〉ϕ = 〈A, [JP ](X)〉(ϕ⊗ϕop)◦Tr , ∀P ∈Pn. (5)

The free Stein discrepancy of X relative to V is defined as the quantity

Σ∗(X | V ) = inf
A
‖A− (1⊗ 1op)⊗ In‖(ϕ⊗ϕop)◦Tr,

where the infimum is taken over the set of Stein kernels of X relative to V .

Observe that (5) is not the exact analogue of (4). Indeed, the exact analogue would be

〈[DV ](X), [Dp](X)〉ϕ = 〈A, [J Dp](X)〉(ϕ⊗ϕop)◦Tr , ∀p ∈P,

which is a weaker condition. Fortunately, all of the examples in Section 3 satisfy our stronger condition and
therefore offer applications of the free HSI. We use this stronger condition in the proof of Lemma 2.4, but
the weaker condition would suffice if a conjecture of Voiculescu receives even a partially affirmative answer
(see Remark 2.5).

We note that since [J (Pn)](X) need not be dense in L2(Mn(M⊗̄Mop), (ϕ ⊗ ϕop) ◦ Tr), the free Stein
kernel may not be unique. Nevertheless, so long as at least one free Stein kernel exists, then its projection
onto the L2-closure of [J (Pn)](X) is also a free Stein kernel which attains the infimum in the free Stein
discrepancy. Furthermore, even the Stein kernel of a probability measure ν on Rd need not be unique for
d > 1: the space of Hessians is not dense.

When Φ∗(X) < +∞, Remark 1.2 implies that (5) is equivalent to A ∈ dom (J ∗
X) with J ∗

X(A) =
[DV ](X). Also note that when the potential V is self-adjoint and ϕ is a trace, equation (5) implies A† = A,

where [A†]ij = [A]†ij and (a⊗ bop)† = b∗ ⊗ (a∗)op for a, b ∈M .
Just as with the free Fisher information relative to some potential V , the free Stein discrepancy relative to

V measures in some sense how close the n-tuple is to having as its joint law a free Gibbs state with potential
V . Indeed, by the definition of a free Gibbs state, X has such a joint distribution if and only if (1⊗1op)⊗ In
is a free Stein kernel for X and consequently Σ∗(X | V ) = 0. In particular, we have Σ∗( 1√

ρS | Vρ) = 0. We

will denote (1⊗ 1op)⊗ In by 1 when the context precludes any confusion.

2. An Improved (Non-Microstates) Free log-Sobolev Inequality

We now fix a von Neumann algebra M with a faithful normal trace τ and an n-tuple X = (x1, . . . , xn) of
self-adjoint operators. Provided they exist, the conjugate variables to X will always be denoted ξ1, . . . , ξn.
Let S = (s1, . . . , sn) ∈ Mn be a free (0, 1)-semicircular n-tuple, free from x1, . . . , xn. Fix ρ > 0 and recall
the potential

Vρ =
ρ

2

n∑
j=1

t2j .

For each t ≥ 0 and j = 1, . . . , n, define xj(t) := e−txj +
√

1− e−2t 1√
ρsj , collected as the n-tuple X(t) =

(x1(t), . . . , xn(t)). Let Et : M →W ∗(X(t)) denote the conditional expectation. By [39, Proposition 3.7], the
conjugate variables to X(t) always exist, and if we denote them by ξ1(t), . . . , ξn(t) then for each j = 1, . . . , n

ξj(t) =

√
ρ

√
1− e−2t

Et(sj).

Moreover, if the conjugate variables to X exist then we have

ξj(t) = etEt(ξj).

We collect the conjugate variables to X(t) as the n-tuple Ξ(t) = (ξ1(t), . . . , ξn(t)).
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2.1. De Bruijn’s formula and a free log-Sobolev inequality. The following lemma gives the non-
commutative version of de Bruijn’s formula.

Lemma 2.1. For ρ > 0 and X(t) = (x1(t), . . . , xn(t)) as above,

d

dt
χ∗(X(t) | Vρ) = −1

ρ
Φ∗(X(t) | Vρ).

Proof. We first note that because DjVρ = ρtj , we have

Φ∗(X(t) | Vρ) =

n∑
j=1

‖ξj(t)− ρxj(t)‖22

=

n∑
j=1

‖ξj(t)‖22 − 2ρ+ ρ2(e−2t‖xj‖22 + (1− e−2t)ρ−1)

= Φ∗(X(t))− nρ+ ρ2e−2tVar(X)− nρe−2t.

Next we compute

d

dt
τ(Vρ(X(t)) =

d

dt

[ρ
2
e−2tVar(X) +

n

2
(1− e−2t)

]
= −ρe−2tVar(X) + ne−2t.

By [39, Proposition 7.8],

χ∗(X(t)) = −nt+ χ∗
(
X +

√
ρ−1(e2t − 1)S

)
.

Let r(t) = ρ−1(e2t − 1). Then by [39, Proposition 7.5] we have

d

dt
χ∗(X(t)) = −n+

1

2
Φ∗(X +

√
r(t)S)

dr(t)

dt

= −n+ ρ−1e2tΦ∗
(
X +

√
e2t − 1

1
√
ρ
S

)
= −n+ ρ−1Φ∗(X(t)).

Thus the claimed equality holds. �

Lemma 2.2. For ρ > 0 and X(t) = (x1(t), . . . , xn(t)) as above,

Φ∗(X(t) | Vρ) ≤ e−2tΦ∗(X | Vρ).

Proof. If Φ∗(X) = +∞, then there is nothing to prove. So assume Φ∗(X) < +∞ and let ξ1, . . . , ξn denote
the conjugate variables. Recall that for each j = 1, . . . , n

ξj(t) = etEt(ξj) =

√
ρ

√
1− e−2t

Et(sj).

As observed in Lemma 2.1,

Φ∗(X(t) | Vα) =

n∑
j=1

‖ξj(t)‖22 − ρ(1 + e−2t) + ρ2e−2t‖xj‖22

Now, for each j = 1, . . . , n we have

‖ξj(t)‖22 =

∥∥∥∥e−2tetEt(ξj) + (1− e−2t)

√
ρ

√
1− e−2t

Et(sj)
∥∥∥∥2

2

=
∥∥∥Et (e−tξj +

√
ρ(1− e−2t)sj

)∥∥∥2

2

≤
∥∥∥e−tξj +

√
ρ(1− e−2t)sj

∥∥∥2

2

= e−2t‖ξj‖2 + ρ(1− e−2t).
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So, resuming our computation from above we see

Φ∗(X(t) | Vρ) ≤
n∑
j=1

e−2t‖ξj‖2 + ρ(1− e−2t)− ρ(1 + e−2t) + ρ2e−2t‖xj‖22

= e−2t

 n∑
j=1

‖ξj‖22 − 2ρ+ ρ2‖xj‖22


= e−2tΦ∗(X | Vρ),

as claimed. �

From these two lemmas we obtain the non-commutative analogue of the logarithmic-Sobolev inequality
from classical probability. In particular, this yields an alternate proof for an inequality from [3, Section 7.2]
stated here in the multi-variable case.

Corollary 2.3. For X an n-tuple of non-commutative random variables, S a free (0, 1)-semicircular n-tuple
that is free from X, and any ρ > 0

χ∗(X | Vρ)− χ∗(
√
ρ
−1
S | Vρ) ≤

1

2ρ
Φ∗(X | Vρ).

In particular, if Var(X) = n
ρ then

n

2
+
n

2
log

(
2πe

ρ

)
− χ∗(X) ≤ 1

2ρ
Φ∗(X).

Proof. Using Lemmas 2.1 and 2.2 we have

χ∗(X | Vρ)− χ∗(
√
ρ
−1
S | Vρ) = χ∗(X(0) | Vρ)− lim

t→∞
χ∗(X(t) | Vρ)

=

∫ ∞
0

ρ−1Φ∗(X(t) | Vρ) dt

≤ ρ−1Φ∗(X | Vρ)
∫ ∞

0

e−2t dt =
1

2ρ
Φ∗(X | Vρ).

The second inequality follows by expanding the definitions of the relative free entropy and Fisher information

(and using χ∗(
√
ρ−1S) = n

2 log
(

2πe
ρ

)
). �

2.2. Improving the free log-Sobelev Inequality via Stein’s Method.

Lemma 2.4. Suppose Φ∗(X | Vρ) < +∞. For ρ > 0 and X(t) = (x1(t), . . . , xn(t)) as above

1

ρ
Φ∗(X(t) | Vρ) ≤

e−4t

1− e−2t
Σ∗(X | Vρ)2

Proof. If Σ∗(X | Vρ) = +∞, there is nothing to prove. So assume Σ∗(X | Vρ) < +∞, and let A ∈
L2(Mn(W ∗(X)⊗̄W ∗(X)op)) be a free Stein kernel for X relative to Vρ such that

‖A− 1‖HS = Σ∗(X | Vρ).
Recall that since Φ∗(X) < +∞, this implies J ∗

X(A) = ρX. Let ξ1, . . . , ξn ∈ L2(W ∗(X)) be the conjugate
variables of X, collected in a vector as Ξ = (ξ1, . . . , ξn) so that J ∗

X(1) = Ξ. Now, we compute:

Φ∗(X(t) | Vρ) =

n∑
j=1

‖ξj(t)− ρxj(t)‖22

=

n∑
j=1

〈
e−tξj +

√
ρ(1− e−2t)sj − ρxj(t), ξj(t)− ρxj(t)

〉
2

= e−t
n∑
j=1

〈ξj − ρxj , ξj(t)− ρxj(t)〉2

= e−t 〈Ξ− ρX,Ξ(t)− ρX(t)〉2
= e−t 〈J ∗

X [1−A],Ξ(t)− ρX(t)〉2 . (6)
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Recall that on C 〈x1(t), . . . , xn(t)〉

etJX = JX(t) =

√
ρ

√
1− e−2t

JS ,

so that for any Z ∈ Et(M)n we have

〈J ∗
X [1−A], Z〉2 =

e−t
√
ρ

√
1− e−2t

〈J ∗
S [1−A], Z〉2 .

So continuing our computation we have

Φ∗(X(t) | Vρ) =
e−2t√ρ
√

1− e−2t
〈J ∗

S [1−A],Ξ(t)− ρX(t)〉2

≤
e−2t√ρ
√

1− e−2t
‖J ∗

S [1−A]‖2Φ∗(X(t) | Vρ)1/2.

Now, since ∂sj |W∗(X)≡ 0 for each j = 1, . . . , n we have by [39, Proposition 4.1]

J ∗
S [1−A] =

 n∑
j=1

∂∗sj [δi=j1⊗ 1−Aij ]

n

i=1

=

si − n∑
j=1

Aij#sj

n

i=1

= [1−A]#S.

Since s1, . . . , sn are free from W ∗(X), it is easy to see that

‖[1−A]#S‖2 = ‖1−A‖HS = Σ∗(X | Vρ)

Thus we have

Φ∗(X(t) | Vρ) ≤
e−2t√ρ
√

1− e−2t
Σ∗(X | Vρ)Φ∗(X(t) | Vρ)1/2,

which is equivalent to the desired inequality. �

Remark 2.5. The equality on line (6) is precisely where we use the stronger version of the definition of
a free Stein kernel. It is a conjecture of Voiculescu that conjugate variables always lie in the L2-closure of
cyclic gradients. If this even weakly true for Ξ(t), then the equality on line (6) will hold for the weaker
version of the definition of a free Stein kernel.

With the previous lemmas in hand, the following proof is, aside from notation, identical to that of
[23, Theorem 2.2]. We still present it here, for the sake of convenience.

Theorem 2.6. Let X = (x1, . . . , xn) be an n-tuple of non-commutative random variables, and S = (s1, . . . , sn)
a free (0, 1)-semicircular n-tuple, free from X. Then for any ρ > 0 we have

χ∗(X | Vρ)− χ∗(
√
ρ
−1
S | Vρ) ≤

1

2
Σ∗(X | Vρ)2 log

(
1 +

Φ∗(X | Vρ)
ρΣ∗(X | Vρ)2

)
.

Proof. If Φ∗(X | Vρ) = +∞, then there is nothing to prove, so we assume that Φ∗(X | Vρ) < +∞. If
Σ∗(X | Vρ) = +∞, then the right-hand side reduces to 1

2ρΦ∗(X | Vρ) and the inequality holds by Corollary

2.3. Thus we may assume Σ∗(X | Vρ) < +∞.
Using Lemmas 2.1, 2.2, and 2.4 we have

χ∗(X | Vρ)− χ∗(
√
ρ
−1
S | Vρ) =

∫ ∞
0

ρ−1Φ∗(X(t) | Vρ) dt

≤ ρ−1Φ∗(X | Vρ)
∫ u

0

e−2t dt+ Σ∗(X | Vρ)2

∫ ∞
u

e−4t

1− e−2t
dt

≤ 1

2ρ
Φ∗(X | Vρ)(1− e−2u) +

1

2
Σ∗(X | Vρ)2(−e−2u − log(1− e−2u)).

Optimizing in u yields 1− e−2u =
ρΣ∗(X|Vρ)2

Φ∗(X|Vρ)+ρΣ∗(X|Vρ)2 and the desired inequality. �



FREE STEIN KERNELS AND AN IMPROVEMENT OF THE FREE LSI 11

3. Examples of free Stein kernels

In this section we present several examples n-tuples of self-adjoint operators with known free Stein kernels
relative to the potential V1, for which equation (5) reduces to

〈X,P 〉ϕ = 〈A,JXP 〉(ϕ⊗ϕop)◦Tr , ∀P ∈P(X)n,

which, in turn, is equivalent to the system of equations

〈xj , p(X)〉ϕ =

n∑
k=1

〈[A]jk, [∂kp](X)〉ϕ⊗ϕop , p ∈P,

for j = 1, . . . , n.
Notably, these examples represent all known applications of the free monotone transport theorem of

Guionnet and Shlyakhtenko [18] (excepting the infinite variable case considered in [28]). That is, under
certain hypothesis, the n-tuples of operators considered in these examples have been shown by free transport
arguments to generate a von Neumann algebra isomorphic to the free group factor L(Fn) (the von Neumann
algebra generated by a free (0, 1)-semicircular n-tuple), or (in Example 3) a free Araki-Woods factor (the
non-tracial analogue of L(Fn)). Moreover, the free Stein discrepancy being small is a necessary condition
under the hypotheses used in these free transport arguments. Indeed, the free Stein discrepancy is dominated
by a norm derived from the projective tensor norm on P(R)⊗ (P(R))op. At the core of the proofs of each of
these applications is the fact that this latter norm must be sufficiently small (so that, for example, the free
Stein kernel is invertible in a particular Banach algebra). In light of this, we posit the following conjecture.
See [18] for further details on free monotone transport.

Conjecture. Suppose X = (x1, . . . , xn) has joint law µX , and A = A† is a free Stein kernel for X relative
to V1. Then there exists ε > 0 such that if Σ∗(X | V1) < ε, then there exists free transport from the free
semicircle law to µX . In particular, we can embed W ∗(X) ↪→ L(Fn).

Each of the following examples arises from a similar construction: Let HR let be a real Hilbert space
with orthonormal basis {e1, . . . , en}, contained in some complex Hilbert space H. Then the operators in our
examples will be represented on some Hilbert space completion F of the following space:

Ffinite := CΩ⊕
⊕
d≥1

H⊗d,

where Ω is the vacuum vector (to be regarded as the generator of “H⊗0”). We consider linear operators
`(e1), . . . , `(en) on Ffinite defined by

`(ej)Ω = ej

`(ej)f1 ⊗ · · · ⊗ fd = ej ⊗ f1 ⊗ · · · ⊗ fd, f1, . . . , fd ∈ H.

These operators, which will be bounded operators on all the completions of Ffinite, are known as left creation
operators, possibly with some additional adjective depending on the completion. Furthermore, the particular
completion considered will determine the behavior of the adjoints `(e1)∗, . . . , `(en)∗, which are known as left
annihilation operators (possibly with some additional adjectives). In fact, for the sake of these examples this
behavior is more enlightening than an explicit description of the inner product on Ffinite which determines
the completion F , and so we forgo the latter.

In the following examples, the self-adjoint operators of interest are xj = `(ej) + `(ej)
∗, j = 1, . . . , n. We

consider their distribution with respect to the vacuum state ϕ( · ) = 〈 · Ω,Ω〉F . In particular, we will describe
free Stein kernels for the n-tuple X = (x1, . . . , xn) relative to V1.

Example 1: q-semicircular systems [6]. Let HR = Rn, contained in H = Cn. For q ∈ [−1, 1], one can
define an inner product on Ffinite (see [6, Lemma 3] for an explicit formula) so that for each j = 1, . . . , n

`(ej)
∗Ω = 0

`(ej)
∗f1 ⊗ · · · ⊗ fd =

d∑
k=1

qk−1 〈fk, ej〉 f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fd, f1, . . . , fd ∈ Cn,
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where f̂k denotes omission from the tensor product. In this case, {`(ej)}nj=1, {`(ej)∗}nj=1, and {xj}nj=1 are
respectively known as left q-creation operators, left q-annihilation operators, and q-semicircular operators.
Also, the vacuum state is a trace which we denote τ . When q = 0, X is a free (0, 1)-semicircular n-tuple.

Towards exhibiting a free Stein kernel, for each d ≥ 1 let πd ∈ B(F) be the projection onto (Cn)⊗d, and
let π0 ∈ B(Fq(n)) be the projection onto CΩ. Consider the operator

Ξq =
∑
d≥0

qdπd.

When q2n < 1, Ξq is a Hilbert–Schmidt operator on F . Consequently, using the identification

L2(W ∗(X)⊗̄W ∗(X)op) ∼= HS(F)

a⊗ b◦ 7→ 〈 · , b∗Ω〉F aΩ,

we can consider A = Ξq ⊗ In ∈ L2(Mn(W ∗(X)⊗̄W ∗(X)op)). It was observed by Shlyakhtenko in [32] that
J ∗
X(A) = X (see also [33, Lemma 10]). Hence A is a free Stein kernel for X with respect to V1, and

Σ∗(X | V1) ≤
√
n‖Ξq − 1⊗ 1◦‖τ⊗τop =

|q|n√
1− q2n

.

Example 2: mixed q-semicircular systems [7]. As before, we let HR = Rn and H = Cn. Given a
symmetric matrix Q = (qij) ∈Mn([−1, 1]), one can define an inner product on Ffinite (see [7, Section 3] for
a formula) so that for each j = 1, . . . n

`(ej)
∗Ω = 0

`(ej)
∗ei1 ⊗ · · · ⊗ eid =

n∑
k=1

qji1 · · · qjik−1
〈eik , ej〉 ei1 ⊗ · · · ⊗ êik ⊗ · · · ⊗ eid .

The operators xj = `(ej) + `(ej)
∗ are called mixed q-Gaussian variables, and the vacuum state is again a

trace, which we denote by τ .
As before, a free Stein kernel will arise from Hilbert–Schmidt operators. However, in order to properly

describe them we require a finer orthogonal decomposition of F . For d ≥ 1 and 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n
define

F(i1,...,in) = span{eiσ(1) ⊗ · · · ⊗ eiσ(d) : σ ∈ Sd},
where Sd is the permutation group on d elements. Then these subspaces along with CΩ offer an orthogonal
decomposition of F . Let π(i1,...,id) be the orthogonal projection onto F(i1,...,id) and let π0 be the orthogonal
projection onto CΩ. For each j = 1, . . . , n, define

Ξj = π0 +
∑
d≥1

∑
1≤i1≤···≤id≤n

qji1 · · · qjidπ(i1,...,id).

Then Ξj is a Hilbert–Schmidt operator if and only if Qj(2) :=
∑n
i=1 |qij |2 < 1. Assume Qj(2) < 1 for each

j = 1, . . . , n. Using the same identification as in Example 1, we can consider

A =

n∑
j=1

Ξj ⊗ Ejj ∈ L2(Mn(W ∗(X)⊗̄W ∗(X)op)),

where Ejj is the diagonal matrix with jjth entry 1 and all others zero. By [27, Proposition 2] J ∗
X(A) = X,

and hence using [28, Lemma 5.1] we see

Σ∗(X | V1) ≤

 n∑
j=1

‖Ξj − 1⊗ 1op‖2τ⊗τop

1/2

=

 n∑
j=1

Qj(2)

1−Qj(2)

1/2

.

Example 3: q-deformed Araki-Woods algebras [20]. Once again we have HR = Rn, however we modify
H. Let {Ut : t ∈ R} be an orthogonal representation of R onto HR, which extends to a one parameter group
of unitary transformations on Cn. By Stone’s theorem, there exists a closed positive operator B such that
Ut = Bit for every t ∈ R. We then consider the following inner product

〈f, g〉U :=

〈
f,

2

1 +B−1
g

〉
, f, g ∈ Cn,
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and let H be the completion of Cn with respect to ‖ · ‖U . Recall from [31] that this yields an isometric
embedding of HR into H where the restriction of Re 〈·, ·〉U to HR recovers the original inner product. In
particular, our orthonormal basis {e1, . . . , en} for HR, are unit vectors inside in H with completely imaginary
covariance.

Given q ∈ [−1, 1], one defines an inner product on Ffinite (see [20, Section 1]) so that for each j = 1, . . . , n

`(ej)
∗Ω = 0

`(ej)
∗f1 ⊗ · · · ⊗ fd =

d∑
k=1

qk−1 〈fk, ej〉U f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fd, f1, . . . , fd ∈ H.

The operators xj = `(ej) + `(ej)
∗ are called q-quasi-free semicircular operators, and the vacuum state ϕ

(which is not a trace unless the orthogonal representation {Ut : t ∈ R} is trivial) is called a q-quasi free state.
Furthermore, the action of the modular operator ∆ϕ is known:

∆ϕxj =

n∑
k=1

[B]jkxk,

where [B]jk is the jkth entry of the matrix representation of B as a map on HR with respect to the basis
{e1, . . . , en}. In the case q = 0, the xj are Shlyakhtenko’s quasi-free semicircular operators and ϕ is a free
quasi-free state [31].

Letting Ξq be exactly as in Example 1 (with q2n < 1 so it is a Hilbert–Schmidt operator), it was shown
in [29, Proposition 2.2] that

〈xj , p(X)〉ϕ =

n∑
k=1

〈[
2

1 +B

]
jk

(∆ϕ ⊗∆ϕop)(Ξ∗q), [∂kp](X)

〉
ϕ⊗ϕop

, p ∈P,

where
[

2
1+B

]
jk

is the jkth entry of the matrix representation of 2
1+B as a map on HR with respect to the

basis {e1, . . . , en}. Thus

A = (∆ϕ ⊗∆ϕop)(Ξ∗q)⊗
2

1 +B
∈ L2(Mn(W ∗(X)⊗̄W ∗(X)op), (ϕ⊗ ϕop) ◦ Tr)

is a free Stein kernel for X relative to V1. Using
[

2
1+B

]
jj

= 1 we have

Σ∗(X | V1) ≤

n‖(∆ϕ ⊗∆ϕop)(Ξ∗q)− 1⊗ 1op‖2ϕ⊗ϕop +
∑
j 6=k

∣∣∣∣∣
[

2

1 +B

]
jk

∣∣∣∣∣
2

‖(∆ϕ ⊗∆ϕop)(Ξ∗q)‖2ϕ⊗ϕop

1/2

.

It is not difficult to show that if {ξ(d)
` }`∈Id is an orthonormal basis for πdF , then

‖(∆ϕ ⊗∆ϕop)(Ξ∗q)− 1⊗ 1op‖2ϕ⊗ϕop =
∑
d≥1

∑
`∈Id

q2d‖∆−1
ϕ ξ

(d)
` ‖

2
ϕ

Thus, in the estimate for Σ∗(X | V1) we see that the first term vanishes as q → 0, whereas the sum vanishes
as B → 1. Since W ∗(X) is known to be a type III factor so long as B 6= 1, this would offer a counterexample
to our conjecture were it not for the fact that

A† = (∆ϕ ⊗∆ϕop)(Ξ∗q)⊗
2

1 +B−1
6= A.

4. One-dimensional case

In this section, we give the statements of our results in the one-dimensional case. The statements become
simpler, in particular because we have an explicit expression for the entropy of a probability measure on R:

χ(µ) = χ∗(µ) :=

∫
log |x− y|µ(dx)µ(dy) +

3

4
+

1

2
log(2π)

while the relative entropy with respect to the semicircular law dσ = 1
2π

√
4− x2dx (with unit variance) is

given by

χ(µ|σ) :=
1

2

∫
x2µ(dx)− χ(µ).
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We note χ(σ) = 1
2 log(2πe) and so χ(σ | σ) = − 1

2 log(2π). The one-dimensional free Fisher information with
respect to σ is given by

Φ∗(µ|σ) =

∫
(Hµ(x)− x)2µ(dx)

where Hµ(x) =
∫

(x− y)−1µ(dy) is the Hilbert transform of µ. The LSI then takes the form

χ(µ|σ) +
1

2
log(2π) ≤ 1

2
Φ∗(µ|σ).

In addition to the general proof of Biane and Speicher [3], several other techniques have been successfully
applied to obtain this one-dimensional inequality. Ledoux also proved it using a free analogue of the Brunn-
Minkowski inequality [22] (which itself was also proven using a random matrix approximation). Finally,
Ledoux and Popescu [25] gave a proof using mass transport, adapting arguments of Cordero-Erausquin [12]
in the classical case.

The Stein factor A associated to a probability measure (and relative to the semicircular law) is a function
of two variables, such that ∫

xP (x)µ(dx) =

∫ ∫
A(x, y)P̃ (x, y)µ(dx)µ(dy)

for all polynomials P , where P̃ is the free difference quotient, which takes value P̃ (x, y) = P ′(x) if x = y,

and P (x)−P (y)
x−y otherwise. The measure µ is semicircular with unit variance iff A is constantly equal to 1,

and the Stein discrepancy is given by

Σ∗(µ | σ) :=

(∫
|A(x, y)− 1|2µ(dx)µ(dy)

)1/2

.

In this context, the free HSI inequality takes the following form:

Corollary 4.1. For any centered measure µ, given its Stein kernel A, we have

1

2

∫
x2µ(dx)−

∫
log |x− y|µ(dx)µ(dy)− 3

4

≤ 1

2

∫
|A(x, y)− 1|2µ(dx)µ(dy)× log

(
1 +

∫
(Hµ(x)− x)2µ(dx)∫

|A(x, y)− 1|2µ(dx)µ(dy)

)
.

5. Rate of convergence in the free CLT

As in the classical case, the free HSI inequality can be used to give bounds on how fast the entropy
converges along the free Central Limit Theorem. Let us first recall the statement of the free CLT:

Theorem 5.1 (Free CLT, [34,36]). For each j = 1, . . . , N let (x
(N)
j )N∈N be a sequence of freely independent,

identically distributed random variables. Assume each x
(N)
j is centered and that the covariance of the n-tuples

X(N) := (x
(N)
1 , . . . , x

(N)
n ) is the identity. If

Y (N) :=
X(1) + ..+X(N)

√
N

,

then Y (N) = (y
(N)
1 , . . . , y

(N)
n ) converges (in moments) to a free (0, 1)-semicircular n-tuple.

In [10], Chystiakov and Gotze showed that for a sequence of freely independent, identically distributed

1-tuples of random variables (x
(N)
1 )N∈N, the entropy of the renormalized convolution y

(N)
1 satisfies

χ∗(y
(N)
1 |σ) = χ∗(σ|σ) +O(N−1)

under the assumptions that the random variables x
(N)
1 are bounded (actually, they show a more precise

expansion, and identify the prefactor in the leading term of order N−1 in the expansion). The order of
magnitude of the reminder is sharp. The proof is based on an Edgeworth expansion of the distribution
function of normalized sums.

As in the classical case, we can use the HSI inequality to obtain a rate of convergence of order logN
N for

random variables with finite free Fisher information and free Stein discrepancy. While the rate is slightly
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suboptimal, the technique has the advantage of avoiding technical computations, is easily applied to the
multivariate case, and can be adapted to freely independent but not identically distributed Xi.

A quantitative multi-dimensional free CLT was obtained by Speicher in [35]. The estimates obtained
there involve distances between Cauchy transforms, and are obtained via a reduction to a one-dimensional
operator-valued free central limit theorem.

Theorem 5.2. For each j = 1, . . . , N let (x
(N)
j )N∈N be a sequence of freely independent, identically dis-

tributed random variables. Assume each x
(N)
j is centered and that the covariance of the n-tuples X(N) :=

(x
(N)
1 , . . . , x

(N)
n ) is the identity. For (a

(N)
1 , . . . , a

(N)
N )N∈N an array of real numbers satisfying

∑N
`=1 (a

(N)
` )2 =

1, let

Y (N) := a
(N)
1 X(1) + · · ·+ a

(N)
N X(N).

Assume that the free Fisher information and the free Stein discrepancy of X(1) relative to V1 are both finite.

Let σN :=
∑N
`=1 (a

(N)
` )4. Then

|χ∗(Y (N)|V1)− χ∗(S|V1)| = O(σN log(σ−1
N )).

In particular, when a
(N)
` = N−1/2 for each ` = 1, . . . , N we get a rate of order logN

N in the free CLT

(instead of the sharp 1
N of [10]). So in exchange for allowing non-identical weights in the sum and covering

the multivariate case, we end up with a slightly worse rate. This situation is the same as for the classical
entropic CLT obtained via the HSI inequality of [23].

Proof. We first compute the free Stein kernel of Y (N) in terms of the kernels for X(1), . . . , X(N), which we
denote A1, . . . , AN . We may assume ‖A` − 1‖HS = Σ∗(X(`) | V1) = Σ∗(X(1) | V1) for each ` = 1, . . . , N (the
latter equality following by the identical distributions of X(1), . . . , X(N)). Since the X(`) are free, it follows
that for P ∈Pn

〈
Y (N), P (Y (N))

〉
2

=

N∑
`=1

a
(N)
`

〈
X(`), P (Y (N))

〉
2

=

N∑
`=1

a
(N)
`

〈
A`, a

(N)
` [JP ](Y (N))

〉
HS

.

Thus if EN is the projection onto L2(MN (W ∗(Y (N))⊗̄W ∗(Y (N))op), then

A := EN

(
N∑
`=1

(
a

(N)
`

)2

A`

)

is a free Stein kernel for Y (N) relative to V1. Therefore

Σ∗(Y (N) | V1)2 ≤ ‖A− 1‖2HS

=

∥∥∥∥∥EN
(

N∑
`=1

(
a

(N)
`

)2

(A` − 1)

)∥∥∥∥∥
2

HS

=

N∑
`

(
a

(N)
`

)4

‖A` − 1‖2HS

= σNΣ∗(X(1) | V1)2,

where the third line follows by freeness. Moreover, the Fisher information of Y (N) is smaller than that
of X(1), as a direct consequence of the free Stam inequality (see [39, Proposition 6.5]). The result then
follows from a direct application of the HSI inequality to Y (N) and monotonicity of t 7→ t log(1 + ct−1) for
c, t ≥ 0. �
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6. Bound on the deficit in the log-Sobolev inequality

We produce the free analogue of [4, Theorem 1.1]. Let S = (s1, . . . , sn) and S′ = (s′1, . . . , s
′
n) each be

free (0, 1)-semicircular n-tuples in Mn, free from each other and free from x1, . . . , xn. Fix ρ > 0 and let
1√
ρS = Y = (y1, . . . , yn), a free (0, ρ−1)-semicircular n-tuple. For each t ≥ 0 we denote

X(t) = (x1(t), . . . , xn(t)) = (x1 +
√
ts′1, . . . , xn +

√
ts′n)

Y (t) = (y1(t), . . . , yn(t)) = (y1 +
√
ts′1, . . . , yn +

√
ts′n).

Note that Y (t) is a free (0, ρ−1 + t)-semicircular n-tuple.
If Z is a free (0, ρ−1)-semicircular n-tuple, then denote

∆∗(X,Z) = χ∗(X | Vρ)− χ∗(Z | Vρ).
Also define d(t) = t− log(1 + t) for t > −1.

Theorem 6.1.

Φ∗(X | Vρ)− 2ρ∆∗(X,
√
ρ
−1
S) ≥ nρ · d

(
Φ∗(X)

nρ
− 1

)
.

Proof. We compute using [39, Proposition 7.5]

∆∗(X(t), Y (t)) = χ∗(Y (t))− χ∗(X(t)) +
1

2(ρ−1 + t)

n∑
j=1

τ(xj(t)
2 − yj(t)2)

= χ∗(Y (t))− χ∗(X(t)) +
1

2(ρ−1 + t)

n∑
j=1

τ(x2
j − y2

j )

= χ∗(Y )− χ∗(X) +
1

2

∫ t

0

Φ∗(Y (r))− Φ∗(X(r)) dr +
1

2(ρ−1 + t)

n∑
j=1

τ(x2
j − y2

j )

= ∆∗(X,Y ) +
1

2

∫ t

0

Φ∗(Y (r))− Φ∗(X(r)) dr − ρt

2(ρ−1 + t)

n∑
j=1

τ(x2
j − y2

j ).

Equivalently,

∆∗(X,Y ) = ∆∗(X(t), Y (t)) +
1

2

∫ r

0

Φ∗(X(r))− Φ∗(Y (r)) dr +
ρt

2(ρ−1 + t)

n∑
j=1

τ(x2
j − y2

j ).

From the free Stam inequality [39, Proposition 6.5] we have

Φ∗(X(r)) ≤ 1

Φ∗(X)−1 + Φ∗(
√
rS′)−1

=
nΦ∗(X)

n+ rΦ∗(X)
.

Thus ∫ t

0

Φ∗(X(r))− Φ∗(Y (r)) dr ≤
∫ r

0

nΦ∗(X)

n+ rΦ∗(X)
− n

ρ−1 + r
dr

= n log

(
n+ tΦ∗(X)

n(1 + ρt)

)
.

Continuing our previous computation we have

∆∗(X,Y ) ≤ ∆∗(X(t), Y (t)) +
n

2
log

(
n+ tΦ∗(X)

n(1 + ρt)

)
+

ρt

2(ρ−1 + t)

n∑
j=1

τ(x2
j − y2

j ). (7)

We claim limt→∞∆∗(X(t), Y (t)) = 0. By our previous computation, it suffices to show limt→∞ χ∗(Y (t))−
χ∗(X(t)) = 0. Note that χ∗(Y (t)) = n

2 log(2πe(ρ−1 + t)) and so by [39, Proposition 7.2] and [39, Proposition
7.5.(a)] we have

n

2
log

(
ρ−1 + t

n−1Var(X) + t

)
≤ χ∗(Y (t))− χ∗(X(t)) ≤ n

2
log

(
ρ−1 + t

t

)
,

which establishes the claim.
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Hence, taking the limit as t→∞ in (7) yields

∆∗(X,Y ) ≤ n

2
log

(
Φ∗(X)

nρ

)
+
ρ

2

[
Var(X)− n

ρ

]
.

Replacing ρVar(X)− n with 1
ρ (Φ∗(X | Vρ)− Φ∗(X) + nρ) yields

∆∗(X,Y ) ≤ n

2
log

(
Φ∗(X)

nρ

)
+

1

2ρ
Φ∗(X | Vρ)−

1

2ρ
Φ∗(X) +

n

2

=
1

2ρ
Φ∗(X | Vρ)−

n

2
d

(
Φ∗(X)

nρ
− 1

)
,

which is equivalent to the claimed inequality. �

7. A Microstates Free log-Sobolev Inequality

In this section, we prove a log-Sobolev inequality for the microstates free entropy. This result is simply a
multi-variable analogue of [25, Theorem 4]. The proof of [25, Theorem 4] relies on the existence of transport
between the measure of interest and the minimizer of the free entropy relative to a potential. Recall that by
Lemma 1.6 the minimizer of the microstates free entropy relative to a potential V ∈P(R) has as a joint law
a free Gibbs state with potential V . Not only will we have to assume the existence of free transport in the
multi-variable case, which is already a very restrictive assumption, but moreover we must assume that the
free transport map is monotone and implemented by an invertible n-tuple of power series.

Definition 7.1. For f ∈P(R), R > 0, we say that f is convex if J Df ≥ 0 as an element of Mn(P⊗̂RPop).

We have the following lemma, which is the analogue of the fact that a classical convex function lies above
any of its tangent lines.

Lemma 7.2. Let (M, τ) be a tracial von Neumann algebra and let f ∈P(R), R > 0, be convex. If A,B ∈Mn

(self-adjoint) satisfy ‖A‖, ‖B‖ ≤ R, then

τ(f(A)) ≥ τ(f(B) + [Df ](B) · (A−B)).

Proof. The convexity of f implies [J Df ](A,B) is positive in Mn(M⊗̄Mop). Hence

0 ≤ 〈[J Df ](A,B)#(A−B), (A−B)〉2 =

n∑
j,k=1

τ((Aj −Bj)[∂kDjf ](A,B)#(Ak −Bk))

=

n∑
j=1

τ((Aj −Bj) {[Djf ](A)− [Djf ](B)}) = τ([Df ](A) · (A−B)− [Df ](B) · (A−B)).

Now, for t ∈ [0, 1] define At := tA+ (1− t)B and

h(t) := τ(f(At)− f(B)− [Df ](B) · (At −B)).

Note that At − B = t(A − B). We clearly have h(0) = 0 and we wish to show h(1) ≥ 0, which we shall
demonstrate by showing h′(t) ≥ 0. We compute

d

dt
h(t) = τ(

n∑
j=1

[∂jf ](At)#(A−B)− [Df ](B) · (A−B))

=
1

t
τ([Df ](At) · (At −B)− [Df ](B) · (At −B)),

which is positive by our initial observation above. �

We also have a much weaker converse of Lemma 1.6:

Proposition 7.3. Let Y = (y1, . . . , yn) ∈ Mn have as a joint law a free Gibbs state with potential V for
some convex, self-adjoint V ∈P(R), R > ‖Y ‖. Let F ∈ (P(R))n be such that it has a compositional inverse
G ∈ (P(‖F‖R))n and JF ≥ 0. Then χ(F (Y ) | V ) ≥ χ(Y | V ).
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Proof. Note that Y = G(F (Y )). We compute using Lemma 7.2 and [37, Proposition 3.5]

χ(F (Y ) | V )− χ(Y | V ) = τ(V (F (Y ))− V (Y ))− χ(F (Y )) + χ(Y )

≥ τ([DV ](Y ) · (F (Y )− Y )) + (τ ⊗ τop) ◦ Tr(log |[JG](F (Y ))|).

Now, since the joint law of Y is a free Gibbs state with potential V , [D1V ](Y ), . . . , [DnV ](Y ) are the conjugate
variables to Y . So using (2) we have

χ(F (Y ) | V )− χ(Y | V ) ≥ (τ ⊗ τop) ◦ Tr([JF ](Y )− 1 + log |[JG](F (Y ))|).

Then, sinceG◦F is the identity, we have [JG](F (Y )) = [(JF )−1](Y ). So continuing the above computation
we have

χ(F (Y ) | V )− χ(Y | V ) ≥ (τ ⊗ τop) ◦ Tr([JF ](Y )− 1− log[JF ](Y )) ≥ 0,

since t− 1− log(t) ≥ 0 for t ≥ 0. �

Proposition 7.4. Suppose Y = (y1, . . . , yn) ∈ Mn has a free Gibbs state with potential V as a joint law,
where V = V ∗ ∈ P(R), R > ‖Y ‖, is such that V − ρV1 is convex for some ρ > 0. Suppose F ∈ (P(R))n

satisfies:

(i) there exists G ∈ (P(‖F‖R))n a compositional inverse of F ;
(ii) JG ≥ 0; and

(iii) F ∈ (P(‖G‖‖F‖R ))n.

Then

χ(F (Y ) | V )− χ(Y | V ) ≤ 1

2ρ
Φ∗(F (Y ) | V )

Proof. Denote F (Y ) = X = (x1, . . . , xn). If Φ∗(X) =∞, then there is nothing to show. Assume Φ∗(X) <∞
and that ξ1, . . . , ξn are the conjugate variables to x1, . . . , xn. Denote Ξ = (ξ1, . . . , ξn). Observe that the
claimed inequality is equivalent to:

1

2ρ
‖Ξ− [DV ](X)‖22 + τ(V (Y )− V (X)− [DV ](X) · (Y −X))

− 〈Ξ− [DV ](X), Y −X〉2 + 〈Ξ, Y −X〉2 + χ(X)− χ(Y ) ≥ 0.

Let W = V − ρV1, so that by Lemma 7.2 we have τ(W (Y )−W (X)− [DW ](X) · (Y −X)) ≥ 0 or

τ(V (Y )− V (X)− [DV ](X) · (Y −X)) ≥ ρτ(V1(Y )− V1(X)−X · (Y −X))

=
ρ

2
τ(Y · Y −X ·X − 2X · (Y −X))

=
ρ

2
‖Y −X‖22

Noting that

1

2ρ
‖Ξ− [DV ](X)‖22 +

ρ

2
‖Y −X‖22 − 〈Ξ− [DV ](X), Y −X〉2 =

1

2ρ
‖Ξ− [DV ](X)− ρ(Y −X)‖22,

we see that it suffices to show 〈Ξ, Y −X〉2 + χ(X) − χ(Y ) ≥ 0. Conditions (i)-(iii) imply that the full
hypotheses of [37, Proposition 3.5] are satisfied. Using this and (2) (on Y = G(X)) we have

〈Ξ, Y −X〉2 + χ∗(X)− χ∗(Y ) = (τ ⊗ τop) ◦ Tr([JG](X)− 1− log[JG](X)),

which is positive since t− 1− log(t) ≥ 0 for t ≥ 0. �
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